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Abstract. A class of models with spherical constraint is considered. The critical tempera- 
tures for a particular case are obtained numerically and are found to depend on a model 
parameter a contrary to a conjecture of Barrett and Kac. Under certain assumptions, the 
critical exponents are related to those of an auxiliary model which would have the king-like 
behaviour when a > 0 under the universality assumption. Also, the usual spherical model 
(a = 0) results are reproduced from this approach. 

1. Introduction and summary 

Recently, Barrett and Kac (1975) considered a modified spherical model whose 
partition function is given by 

where pij is the interaction matrix, p = l /kT,  H is the symmetry breaking field, cy is a 
parameter of the model and the integration is taken over the sphere xi’ = N. This 
model becomes the usual spherical model (Berlin and Kac 1952, Joyce 1972) when 
a = 0 but for a > 0, the weighting factor together with the spherical constraint brings 
the symmetry of the model closer to that of the Ising model. 

Barrett and Kac conjectured on the basis of a cluster expansion in powers of a that 
the model exhibits a phase transition when the corresponding spherical model (a = 0) 
does, and furthermore that the critical temperature .&(a) does not depend on cy for at 
least sufficiently small a.  They showed the latter conjecture is indeed true far the mean 
field case where pij = J/N.  However, for this mean field interaction, the critical 
temperatures of the spherical and the Ising model are identical. The fact that pc(a) = 
&(O) in this case may, therefore, be fortuitous. 

Our purpose here is to investigate the dependence of pc(a) on a for some non-trivial 
interactions. The one for which one can obtain pC(a),  at least numerically, is Dyson’s 
hierarchical interaction (Dyson 1969). With this choice of interaction for pij, we obtain 
accurate numerical values of critical temperatures as discussed in 5 2. Our finding is 
that they do depend appreciably on cy. Although there is still a possibility that P,(a)may 
be cy -independent for a very small range of cy, our numerical results strongly indicate 
that the cluster expansion of the free energy of (1.1) in powers of a does not have a finite 
radius of convergence at the spherical critical temperature for reasonable interactions. 

The other purpose of this paper is to discuss the critical behaviour of the modified 
spherical model (1.1) under certain assumptions. By introducing an auxiliary system 
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where the spherical constraint of (1.1) is replaced by a Gaussian weighting 
exp(-ps Xi x:) in the integrand, and assuming a thermodynamic scaling form for the 
auxiliary system, we obtain in 0 3 the critical exponents of the modified spherical model 
from those of the auxiliary system. The latter in turn may be inferred from those of the 
king model if one further assumes that the auxiliary system belongs to the same 
universality class as in the Ising model (Kadanoff 1976). The effect of the spherical 
constraint is seen to be exactly the same as that of hidden variables as discussed by 
Fisher (1968). In other words, the spherical constraint quenches the diverging specific 
heat of the auxiliary system and makes it finite. Other critical properties are modified 
accordingly as in Fisher's renormalization of critical exponents (Fisher 1968) and the 
scaling relations between the exponents are preserved. However, when the auxiliary 
system does not have a divergent specific heat the critical behaviours of the two systems 
remain identical. 

For the spherical model case a = 0, some of the arguments of 0 3 need to be 
modified. These modifications, treated separately in 0 4, are necessary due to the fact 
that the renormalization group fixed point of the Gaussian model sits right on a 
boundary where the thermodynamic limit does not exist. This is also seen as the 
mechanism which breaks the scaling law in the spherical model for certain cases, e.g. 
when the dimensionality is greater than 4 for short-range interactions. 

2. Critical temperatures 

We begin our discussion by introducing the auxiliary partition function 
W m 

O N ( S , H ; ~ ) = ~  -W ...I -W i 

and free energy 

E(s, H ;  a )  = lim N-' In dN(s, H ;  a ) .  
N-w 

If we define S@, H ;  a )  from the equation 

then the free energy (including -P factors) of the modified spherical model, 

F@, H ;  a )  = lim N-' In Q N @ ,  H ;  a )  
N-ao 

can be written as (Joyce 1972) 

F@, H ;  a )  = P S - +  In +E(& H J p ;  alp). 

. .  

We now assume pii is chosen such that a phase transition occurs at H = 0 and for any 
a, at least in a finite interval including a = 0. A phase transition is characterized by the 
non-analyticity of S@, 0; a )  or equivalently, due to (2.2), by that of $(s, 0; alp). If the 
surface s* (a /P ) ,  which we call the critical surface, is the set of points in (s, P, a )  space on 
which E(s, 0; a l p )  is singular, then the line of critical temperatures &(a) will be 
determined by the intersection of the critical surface and the surface a@, 0; a )  on which 
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the spherical condition (2.2) is satisfied wi thH = 0. Since s* depends on a/@ only, once 
s*(a) is determined by some means for a fixed a/@ = a, &(a) can then be obtained from 
(2.2): 

The critical surface s* (a )  in turn may be determined by the renormalization group 
theory (Wilson and Kogut 1974); i.e. the value of s which brings the system (2.1) to a 
fixed point under an appropriate renormalization group transformation. 

A model for which the above procedure can actually be carried out exactly is 
Dyson's hierarchical model (Dyson 1969). Here, the interaction pij is chosen through 
the identity 

where N = 2L, Sp,r = Xi x i  for (r  - 1)2' + 1 < i s 2Pr and U is a parameter which deter- 
mines the decay of the long-range interaction. The spherical model (a = 0; McGuire 
1973) and the corresponding Ising model (Dyson 1969) have phase transitions at H = 0 
for 0 < cr < 1. With this choice of interaction, an exact renormalization of (2.1) can be 
achieved in various ways (Baker 1972, Bleher and Sinai 1975, Kim and Thompson 
1977). For the purpose of the present work, we follow that of Kim and Thompson 
(1977) where the scaled partition function 

Y; a >I2 (2.6) (1 +o)(l+ 1)/2+ 1 Fl+l (y ;s ,a )=(6"(s ,2-  

n = 2', 13 0, evolves through the recursion relation 

under a renormalization process that reduces the spin degree of freedom by one-half. 
The starting point of the recursion for the system (2.1) is (Kim and Thompson 1977) 

P,(y;s,a)=[r/(l+s>]"2[1+a/2(1+s)][l+ay2/(1+s)(l+s+a/2)] 

xexp[y2/(1 +SI19 (2.8) 
Criticality is then defined by the value of s = s*(a) which brings (2.8) to a fixed point as 
the renormalization (2.7) is repeated indefinitely. The numerical procedure to obtain 
s * ( a )  is exactly the same as for the king model and is explained in Kim and Thompson 
(1977). The only difference here is that s plays the role of temperature. Furthermore, if 
B i )  is the zeroth-order Hermite coefficient of PI, then it can be shown that 

E(s,  0; a )  = lim 2-' In ~ t ' ( s ,  a ) (2.9) 
I-m 

so that &(a) can be determined from the extrapolation of a sequence {PI }  which is 
obtained from 

p1=--2 a - 1  In B'"( 0 si, a )  (2.10) 
as 

where { s l }  is the sequence which converges to s* (a )  (see Kim and Thompson 1977). 
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In tables 1 and 2, we show the values of s*  and pc thus obtained for various a when 
U = a and $respectively. For cr = a and a = 0, we could obtain the values of s* and pc to 
ten digit accuracy (see (4.7)). We believe the values for a > 0 are of the same accuracy 
even though we have shown in table 1 only the first few significant digits. The deviations 
of &(a) from &(O) are small but are comparable to the difference between &(O) and 
that of the Ising model @?,(Ising) = 0.11602898). 

Table 1. Values of B, and s*  for several values of a when U =a.  
a S *  B E  

0 5y2852 0.1166803 
1 6.0565 0.1166795 
10 8.6713 0.1166239 
lo2 12.2987 0.1164618 
10' 13.6761 0.1163981 
1 o4 13.8675 0,1163895 

~~ 

Table 2. Values of p ,  and s *  for several values of a when r =a. 

a S *  B c  
~ 

0 1.4667 -1.07 
lo-' 1.5464 -1.052 
1 1.8582 0.99240 
10 2,3993 0.9 1566 
lo2 2.6606 0,88694 
io3 2,7014 0.88283 

Exact values 
a t a = O  1.466721 1,071 30 

The physical fixed point of (2.7) is non-Gaussian when U > t and the Gaussian fixed 
point is thermodynamically unstable in this region. Therefore, when a = 0 and U > 4, 
the numerical iteration, being not exactly Gaussian, eventually leads the Gaussian 
toward the stable non-Gaussian fixed point. Consequently, the above method for &(O) 
when U =:gives a poor result. However when a 2 1, the initial distribution is well away 
from the Gaussian so that accurate values of pc are obtained. The dependence of pc on 
(Y for (T = a  is qualitatively the same as for U = if we take note of the fact that 
&(king) = 0.77969366 foc U = 3. 

The fixed points of the Pt transformation are the same as those of the Ising model for 
all cases considered except for the spherical case a = 0. Thus for a > 0, universality is 
confirmed and consequently, we deduce that the system (2.1) and (2.5) has the same 
critical behaviour as that of Ising model for any a > 0, provided that s plays the role of 
temperature (Kadanoff 1976). 

We have also considered the case where the weighting in (1.1) is the sum of two 
Gaussians centred on *1 respectively instead of (1 + a x 2 ) .  Here again, universality is 
confirmed, and the dependence of the critical temperature on a model parameter, which 
is a measure of the sharpness of the Gaussian, was found to be qualitatively similar to 
that of the modified spherical model (1.1). 
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3. Critical exponents 

As the example given in 0 2 suggests, the free energy of the auxiliary system (2.1) can be 
considered to have a phase transition at H = 0 and s = s*(a)  with s playicg the role of 
temperature. It is natural then to assume that the auxiliary free energy F(s, H ;  a )  for 
a > 0 satisfies the usual scaling assumption; that is the 'singular part' Fs of satisfies the 
scaling relation 

fiS(s, H; U ) = A - ~ F ~ ( S * ( U ) + A ~ ~ ( S  -s * (u ) ) ,  AY2H; U )  (3.1) 
where d is the dimensionality of the system. Here y1 and y2 are assumed to be 
a-independent. If we further assume that the system (2.1) for a > 0 belongs to the same 
universality class as the king model, then the scaling indices y l  and y2 are the same as 
those of the Ising model. This is most likely true for the hierarchical interaction given by 
(2.5) since the exact renormalization group takes the system to the same fixed point as in 
the Ising model for any a > 0. For other forms of pij, say short-ranged interactions for 
d > 2, this assumption is less obvious and to what extent it remains valid is an open 
question at the present time. 

Granted (3.1), we are able to relate the critical behaviour of the modified spherical 
model (1.1) to that of the auxiliary model (2.1). 

Let E = s - s*(a) .  Then from (3.1), E has the form 

E(E,  0; a )  = A + (yl/d)BEd/yl- CE +$De2 + higher orders in E (3.2) 
where we have included contributions from the 'regular' part of fi which play a crucial 
role here. Combining (3.2) with (2.2) and (2.4), and assuming D ( a )  # 0, we have 
C(a)  = &(a) and 

X=min( l ,  d /yl- l ) .  (3.3) 
Pc(a) -P~t=BEdIY' -*+DE+ . . .  - €  X , 

We note here that in order for a critical temperature to exist, we require d/y - 1 a 0. 

spherical model. For the specific heat, we have 

C,lk  = i+P2(dP/ds)-' 

Using (3.2) and (3.3), we then obtain the following critical behaviour of the modified 

if d/yl < 2 

if d/yl > 2 

(2y l -d ) l (d -y l )  

(3.4) 

where A '  and A"  are some constants. Hence, the specific heat remains finite at the 
critical point and its singular part is described by the exponent cys given by 

T A  i -p: /D -A''td'y1-2+analytic part in t 

cy, = 2 - d/min(yl, d - yl). (3.5) 
Similarly, for the critical exponents describing the spontaneous magnetization and the 
susceptibility, we have 

P = (d -yz)/min(y 1, d - Y  1) 

Y = (2y~-d)/min(y1, d - Y  1) 

(3.6) 

(3.7) 

and 

respectively. Along the critical isotherms, we need to consider the relation between s 
and H as determined by (2.2). For a finite H, (3.3) is modified to 

t -ex -Ed/yl-lR+(H/Ey,/yl) (3.8) 
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using (3.1) and (3.2). Here R + ( y )  is a scaling function which has the property R+(O) = 0 
andR+(y)-yd/yz as y -,CO. Hence, at t =0,  we have 

EY2/y, if d/yl < 2 
if d/yl > 2 H-( E 2 y 2 / d  

as E + 0. Combining this with the scaling form of &/dH, we easily obtain 

(3.9) 

irrespective of y l  so that 

8 = Yz/(d - Y 2). (3.10) 

Our results for the modified spherical model may be summarized by expressing the 

(3.11) 

The critical exponents obtained above satisfy the scaling laws, a , + 2 p  + y = 2 etc. 

scaling assumption in the form 

F,@, H ;  a) = A -dFs@, + A ’;@ -&(a)), A Y2H; a) 

for the singular part of F@,  H; a) where 

y’,=min(y1,d-yd. (3.12) 

It is then easily seen that the effect of the spherical condition (2.2) is to change the 
scaling index y l  to d - y l  whenever 2y1 > d,  or equivalently, whenever the specific heat 
of the auxiliary system diverges. This is exactly the same as Fisher’s renormalization of 
critical exponents by hidden variables (Fisher 1968). Furthermore, this is also true for 
spin-spin correlations (Kac and Thompson 1977) and the correlation length exponent 
becomes, due to (3.3) 

v = l / y  ’, = max[l/yl, l / (d  - y d l  (3.13) 

if one assumes hyperscaling. However, the exponent q remains the same as in the 
auxiliary system (Kac and Thompson 1977) which is given by 

7 = 2 +d - 2 ~ 2  (3.14) 

under hyperscaling. These results are in fact not restricted to the particular weighting 
(1 + a x 2 )  in (1.1) and should apply equally well to any reasonable weightings such as that 
mentioned at the end of § 2. 

If we consider, as an example, the one-dimensional system whose interaction is 
given by (2.5), then, as mentioned before, the scaling indices y l  and y2  are the same as 
those of the Ising model. From the numerical values of y1 (Bleher and Sinai 1975, 
Baker and Golner 1977, Kim and Thompson 1977), we find that y1 > 1 - y l  for the 
range of CT, f < CT < g o  where (TO = 0.72 is determined numerically. Therefore, for this 
range of U, the critical behaviour of the modified spherical model, from (3.12), is 
different from that of the Ising model. We plot in figure 1 the resulting values of y i  for 
the range of < U < 1. This together with 

Y2 = (1 (3.15) 

determines all critical exponents as discussed above for $ < U < 1, including Y and q, 
since hyperscaling also holds for this range of c. 
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Figure 1. The scaling index y ;  of the modified spherical model with the interaction (2.5) 
against U, the long-range interaction parameter. 

4. Spherical model 

In this section, we apply the discussion given in 05 2 and 3 to the pure spherical model 
where the exact solution is known. However, in this case we need an ad hoc 
consideration because the scaling form (3.1) for the Gaussian model does not apply 
when s <s*(a)  or s = s*(a) and H>O. As an illustration, we again consider the 
long-range interaction (2.5). For this interaction, the partial trace over half of the spin 
degrees of freedom in (2.1) yields the relation (Kim and Thompson 1977) 

&(s, H ;  0 )  = ( 2 " ~ / ~ ) ~ / ~ d ~ / ~ ( 2 " ~  - 1, 2 ( 1 + u ) / 2 ~ ;  0) 

E(s, H; 0)  = $(YS - 1, 2 ( 1 + v ) ' 2 ~ ;  0) + In (2"7r/s) 

(4.1) 

(4.2) 

so that 

as long as the thermodynamic limit exists. However, the thermodynamic limit does not 
exist in this case when s < (2" - l)-' or s = (2" - l)-' and H > 0. Therefore the scaling 
form (3.1) holds with d =  1,  yl'=a, y z = ( 1 + a ) / 2  and s*(O)=(2"-1)-' and has 
meaning only when s>s*(O). This is also true for the d-dimensional short-range 
interactions in which case we have y 1  = 2, y2 = 1 + d / 2  and s*(O) is the limit of the largest 
eigenvalues of pii (Wilson and Kogut 1974). 

Consequently the considerations given in § 3 for the spontaneous magnetization and 
the magnetization along the critical isotherm for H>O cannot be applied for the 
spherical model. To remedy this situation, we make use of the known H-dependence of 
the free energy of the Gaussian models; that is, we use 

E(& H ;  0 )  -E(& 0; 0) - H 2 / € ,  E >o, 
where E = s -s*(O) as before. Then (3.8) is changed to 

t - -AH2/e2  

where A is some constant and the magnetization becomes 

(4.3) 

(4.4) 

d H 
m = - F@, H ;  0)--. d H  E 

(4.5) 
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From (4.4) and (4.9, we then find -t - m z  as H+O so that the exponent p = $ 
irrespective of X. Also at f = 0, we have 

- H X / ( X + 2 )  

hence, 

6 =1+2/X=max[3,(d+y,) / (d-yl)] .  (4.6) 
The rest of the discussion given in § 3 including (3.13) and (3.14) remains valid for 

this case because only the 'high-temperature' side of the scaling form (3.1) is utilized. 
Finally if we substitute the values of y 1  and y 2  given above into these formulae, we get 
complete agreement with the exact solutions (Joyce 1972, McGuire 1973). 

Lastly, we note here that we can obtain the critical temperature of the spherical 
model using only the renormalization group relation (4.2) without actually solving it for 
the detailed expression of F. To see this, we take the derivative of (4.2) with respect to s 
at H = 0 and use (2.4) to obtain 

pc(0)= 2"-'pc(0)+ (4s*(O))-'. 

Then, using s*(O) = (2" - 1)-' which is also obtained from (4.2), we immediately obtain 

pC(O)= (2" - 1)/4(1- 2"-l) 

as in McGuire (1973). 
(4.7) 
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